PROPOSED WIND TURBINE DEVELOPMENT, BEARS DOWNS WIND FARM, TREVILLEDOR CROSS. NEWQUAY. CORNWALL. TR8 4HQ.

FLOOD RISK ASSESSMENT AND SuDS DRAINAGE STRATEGY
J-3131 -Rev.04

PROPOSED WIND TURBINE DEVELOPMENT, BEARS DOWNS WIND FARM, TREVILLEDOR CROSS. NEWQUAY. CORNWALL. TR8 4HQ.

FLOOD RISK ASSESSMENT AND SuDS DRAINAGE STRATEGY

Report No.	Issue Detail	Originator	Date	Checked by	Date
J-3131	04	LT	15/07/25	TPS	17/07/25

For: Clean Earth Energy

Unit 2A Bess Park Road

Trenant Industrial Estate

Wadebridge Cornwall PL27 6HB J-3131

04

July 2025

Job No:

Date:

Edition:

CONTENTS

Item	Content	Page No
1.0	Introduction	1
2.0	Site Location & Description	3
	2.1 Site Location2.2 Existing Usage2.3 Proposed Usage	3 3 3
3.0	Hydrological and Hydrogeological context	5
	3.1 Hydrology3.2 Hydrogeology	5 6
4.0	Assessment of Flood Risks	9
	 4.1 Fluvial and Tidal Flooding 4.2 Groundwater 4.3 Overland Flow 4.4 Flooding from Sewers 4.5 Flooding from Reservoirs, Canals and Other Artificial Sources 4.6 Flooding as a Result of Development 	9 9 10 10 10
5.0	Design Standards	12
	 5.1 The CIRIA SuDS Manual (C753) 5.2 Building Regulations Part H 5.3 The Wallingford Procedure 5.4 National Planning Policy Framework 5.5 Drainage Guidance for Cornwall 	12 12 12 12 12
6.0	Proposed Sustainable Drainage System (SuDS)	14
	 6.1 Drainage Design 6.2 Exceedance Events 6.3 Maintenance 6.4 Residual Risks After Development 6.5 Construction Stage Drainage 	14 15 16 18 18
7.0	Summary and Conclusions	19

APPENDICES

Appendix A	Proposed Site Layout Including Conceptual Drainage Plan
Appendix B	Calculations

1.0 INTRODUCTION

Clean Earth Energy are proposing to develop a site at Bears Down Wind Farm, Trevilledor Cross, Newquay, TR8 4HQ. It is proposed to replace the existing 16 wind turbines on site with 4 no. new turbines, widen the access track through the site and construct an overrun area at the junction with the C0055 public highway. The site lies to the east of the village of St. Eval and northeast of St. Mawgan. The site lies directly south and east of an unnamed access track that joins the B3274 and the A39, as seen on **Figure 1**, below. An aerial view of the site is included in **Figure 2**.

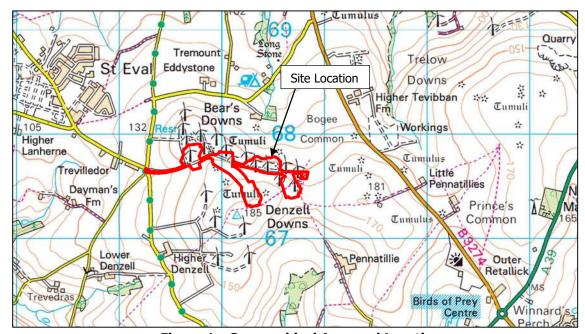


Figure 1 - Geographical Area and Location

Figure 2 - Aerial View of the Site

Reference to the Environment Agency (EA) flood map for planning shows the site to lie within Flood Zone 1 (Low Risk, less than 1 in 1,000 annual probability of river and sea flooding). As the development proposal has an area over 1 ha, it is required to provide a Flood Risk Assessment (FRA) under the National Planning Policy Framework (NPPF) on Planning and Flood Risk.

As the site lies within Flood Zone 1, the primary aim of the FRA will be to ensure that the development does not increase flood risk elsewhere. This can be achieved by providing a suitable sustainable drainage scheme (SuDS) that manages surface water runoff from the development.

To address this requirement, Engineering and Development Solutions (EDS) have been commissioned to prepare an FRA including a surface water drainage strategy for the proposed development, in accordance with the best practice principles of SuDS, the National Planning Policy Framework (NPPF), Sustainable Drainage Systems (SuDS), Guidance for Cornwall and Planning Practice Guidance (PPG). This report details the findings of the study.

2.0 SITE LOCATION & DESCRIPTION

2.1 Site Location

The proposed development site is located approximately 900m east of the village of St. Eval and 3km northeast of St. Mawgan in the county of Cornwall. The wider geographical location is dominated by agricultural farmland; there is an existing wind farm located directly south of the site approximately 300m away. The approximate Ordnance Survey Grid Reference for the centre of the site is SW 90057 67757.

The access track to the site connects to all of the turbines on site; this track joins to an unnamed lane that leads into the village of St. Eval in the west and St. Columb Major to the south. This access route will be retained and widened by approximately 2 metres with a proposed additional access track in the north of the site. An overrun area is to be constructed at the junction to the main site access track with the C0055 public highway, this is to allow large vehicles to negotiate the junction into the site. Details of the proposal can be seen in **Annex A.**

In terms of existing topography, the site has a high point of 185m AOD and generally falls in a south to north direction. Land in the north falls towards the source of the Porthcothnan Stream, at a distance of approximately 200m north of the site boundary.

2.2 Existing Usage

The site currently accommodates 16 wind turbines, with associated infrastructure and private site access to the west. The remaining land is used as farmland.

2.3 Proposed Usage

The development proposal is for the installation of 4 no. new wind turbines to replace the current 16 existing turbines on site. The locations of the proposed turbines are included in **Table 1** below and **Figure 3** for ease of reference. These new turbines will be approximately 150m (tip height). The existing access track in the west will be retained. The proposed layout plan which includes LIDAR ground profile information is shown in **Appendix A**.

Turbine No.	Easting	Northing
2	190085	67724
3	190317	67396
4	190482	67727
5	190670	67470

Table 1 - Proposed Turbine Location

J-3131 FRA and Hydrological Assessment and SuDS- Bears Downs Wind Turbine Development

Figure 3 - Proposed Turbine Locations

3.0 HYDROLOGICAL AND HYDROGEOLOGICAL CONTEXT

3.1 Hydrology

The local hydrology of the area is largely influenced by the existing watercourses that surround the site. There are multiple sources of streams that start in close proximity to the site, including the following:

- Porthcothnan Stream- 200m north east of the site
- Unnamed Tributary to the Penrose Stream- 850m north of the site
- Unnamed tributary to the Gluvian Stream- 600m east of the access road

The general arrangement of the local hydrology is further described below within **Figure 4**.

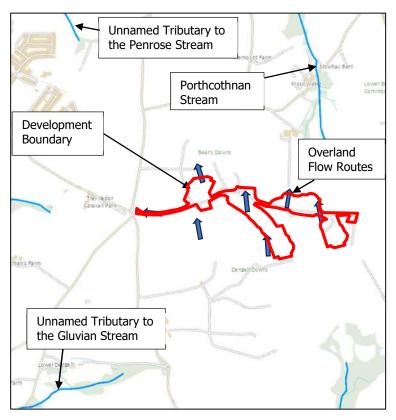


Figure 4 - Plan Showing Local Hydrology and Flow Routes

The topography and existing infrastructure on site, will result in surface water runoff flowing overland towards the natural receptors of the surrounding streams. As land falls predominantly to the north of the site, majority of overland flows will flow in this direction towards the Porthcothnan Stream. The Porthcothnan Stream flows in a general northeast direction away from the site before confluencing with the Penrose Stream and outfalls at the coast in Porthcothnan Bay.

A lesser component of the flow will be conveyed westerly out of the site, down the existing access track towards the unnamed tributary of the Gluvian Stream.

Due to the rural surroundings of the site, it is anticipated that most of the excess surface water runoff will infiltrate into the ground; flows that don't infliltrate into the ground will continue overland to the receptors as described above.

Reference to the Flood Estimation Handbook (FEH) website confirms that the site lays within the catchment of multiple streams, including the Porthcothnan Stream and an unnamed tributary to the Gluvian Stream. The catchment area for the Porthcothan Stream encompassess an area of 0.99km² and the catchment area at the downstream extent of the site for the tributary to the Gluvian Stream is approximatly 0.67km². This can be seen in **Figure 5** below.

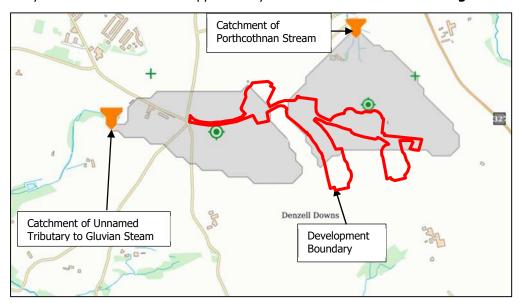


Figure 5 - Plan Showing Catchment at Downstream End of Site

3.2 Hydrogeology

Reference to information published by the British Geological Society (BGS) indicates that the site is underlain by the Staddon Formation which is predominantly made up of sandstone, siltstone and mudstone see **Figure 6**, below. The BGS Geology of Britain mapping describes the bedrock as follows: 'Sedimentary bedrock formed between 407.6 and 393.3 million years ago during the Devonian period.' This unit of bedrock is made out of different sedimentary units. This includes medium to thick beds (1-4m) of fine to medium grained sandstones, the sequence then thickens and occurs in a coarsening up sequence that is interbedded with grey mudstones and siltstones with a gradational weathering profile near the surface. There are no superficial deposits present at the site.

Percolation testing was carried out on site in line with BRE 365/CIRIA 156 by Karn Geo Services on the 25/09/2023. This allowed for the ground conditions to be assessed; the full report and trial pit photos are included in **Appendix B**. The trial pit was taken to a depth of 3.1m which allowed a detailed inspection of the ground conditions of the site to be undertaken. It was concluded that the top 0.2m of soil on the site is topsoil, with the remaining 2.9m of the pit consisting of the Staddon formation. The material is recorded to comprise a brown clayey, sandy gravel of mudstone. The gravel found in the pit was fine to coarse angular to subrounded and becomes more competent with depth. Despite there only being one trial pit carried out on site, **Figure 6** highlights that the geology is consistent throughout the site. This suggests that the ground conditions taken from the trial pit would be similar throughout the entire development site. Further percolation testing should be carried out on site at detail design stage; however, it

is deemed appropriate to conceptually design the infiltration system for the development based on the single trial pit due to the consistency in the geological mapping.

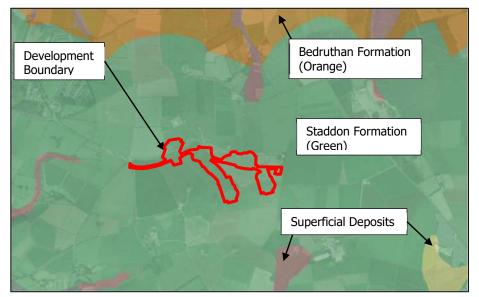


Figure 6 - Plan Showing the Bedrock in the Surrounding Area

The area is designated as a "Secondary A" Aquifer type, which is the general designation for most of Cornwall. This is described as permeable layers that can support local water supplies and may form an important source of base flow to rivers. With respect to groundwater vulnerability, the area is classified as 'High-Medium' as seen in **Figure 7**, below. This is a measure of the vulnerability of groundwater to a pollutant discharged at ground level based upon hydrological, geological, hydrogeological and soil properties within the area.

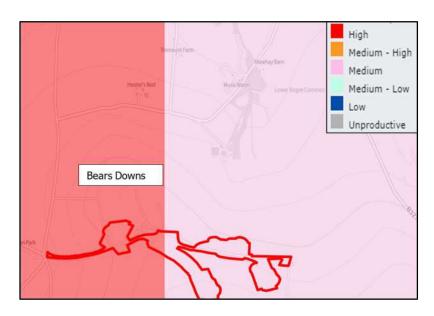


Figure 7 - Groundwater Vulnerability Map

A search has been undertaken with respect to borehole information available on the BGS database to determine groundwater depths in the vicinity of the site. **Figure 8** shows a map of the available boreholes in the surrounding area to the site. As shown, the nearest borehole is referenced SW86 NE4 located in St. Eval, west of the site.

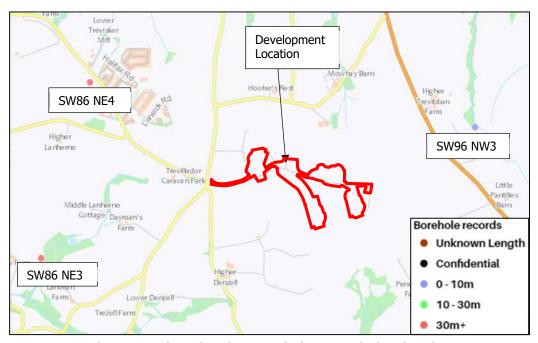


Figure 8 - Plan Showing Borehole Records for the Site

Borehole SW86 NE4, with reference to the available information on the BGS website, indicates that the borehole struck water at 19m below ground level (bgl) and had a resting water level of 13m below the surface. A borehole to the southwest of the site (SW96 NW3) near New Farm, St. Mawgan also struck groundwater. The depth of the borehole here was 49m and water was found at 24m bgl.

Borehole SW96 NW3 to the east of the site at Trelow Downs, was taken in close proximity to the source of the Mellingey Stream in a disused adit. This was a shallow borehole recorded to only 7.3m deep. Groundwater was found at 6m bgl.

Groundwater levels on site are likely to be impacted by the surrounding streams which are in close proximity to the site. These would act as sumps, to draw down on groundwater levels beneath the site. The three boreholes surrounding the site struck water at depths of between 24m, 13m and 6m; it is therefore anticipated that the groundwater levels on site will be somewhere between these levels. As such it is apparent that the groundwater on site should be well depressed beneath the surface. A trial pit excavated under BRE 365/CIRIA 156 to a depth of 3.1m discovered no groundwater on the site.

4.0 ASSESSMENT OF FLOOD RISKS

4.1 Fluvial and Tidal Flooding

The Environment Agency indicative flood map for planning (**Figure 9**, below) shows that the entire site is located in Flood Zone 1, less than a 1 in 1,000 annual probability of river and sea flooding and is therefore not at significant risk from either fluvial or tidal flooding.

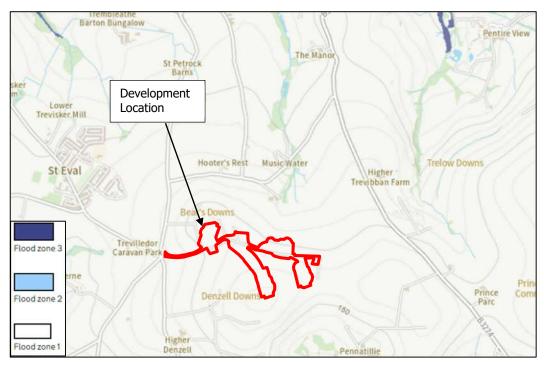


Figure 9 - Environment Agency Flood Map for Planning (Rivers & Sea) Extract

4.2 Groundwater Flooding

Groundwater flooding is linked to the ability of the ground to hold water. The Cornwall Level 1 Strategic Flood Risk Assessment (SFRA) notes the following about groundwater flooding in Cornwall:

"Groundwater flooding is linked to the ability of the ground to hold water. Due to its geology, Cornwall has only minor aquifers and generally does not experience much groundwater type flooding. The exception to this is found in areas that have extensive mine drainage systems, where blockages within drainage tunnels can lead to unexpected breakouts of groundwater at the surface."

Furthermore, inspection of the available information suggests that the groundwater table is depressed at a considerable depth beneath the site. The surrounding water courses to the site will act as sumps, drawing water away from the site. As such, construction for the proposed turbines is likely to be well above the phreatic surface and is unlikely to interact with groundwater flows. Therefore, the risk of groundwater flooding or impact from the proposed works on the groundwater regime is considered to be low and is not examined further in this report.

4.3 Overland Flow

The proposed turbines are located on relatively high ground, compared to the surrounding area. Because of this, the potential for surface water accumulating around the turbines is limited. In addition to this, the ground slopes in a south to north direction towards the source of the Porthcothnan Stream and the unnamed tributary to the Penrose Stream.

The EA map extract, seen in **Figure 10** below, provides further assessment of the risk of flooding from surface water to the site. It shows that the majority of the site is at a very low risk of flooding from surface water suggesting that there is a less than 0.1% chance of surface water flooding each year.

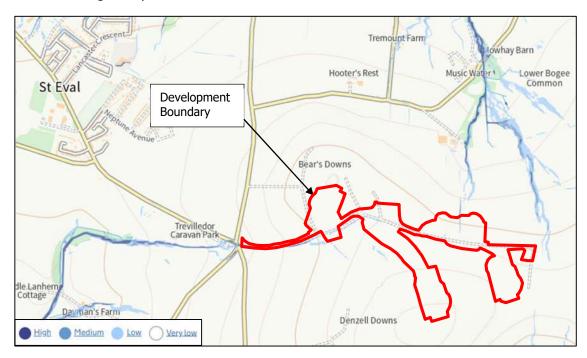


Figure 10 - EA Flood Risk from Surface Water Map Extract

There is an area on site that has a higher risk of flooding on the existing access track that connects to an unnamed lane, heading west towards St. Eval. This is an area of medium risk with a 3.3% risk of flooding each year. Despite this higher risk, it is considered that this does not pose a significant hazard to the proposed development as the overland flows generated here will flow along the access track as the track will act as a conveyance pathway towards the unnamed tributary to the Gluvian Stream. Therefore, flooding from surface water is not considered to represent a significant risk to the development.

4.4 Flooding from Sewers

There are no mains sewers in the area and the nearest upslope residential dwelling lies 1.3km to the west of the development. As such, the likelihood of flooding from sewers is negligible.

4.5 Flooding from Reservoirs, Canals, and Other Artificial Sources

Interrogation of the online EA flood risk mapping service does not indicate the site is at risk of flooding from reservoirs as there are no large artificial bodies of water in the surrounding area.

Therefore, flooding of the site from reservoirs and other artificial water bodies is not considered to be a significant risk.

4.6 Flooding as a Result of Development

The development of the site will alter the nature of the surface permeability across the site through the implementation of new hard standings, overrun area and the associated extension to the access track onto the site and to each individual turbine.

It is important that surface water runoff from the development is understood and managed by means of a sustainable surface water drainage system to prevent an increase in the risk of flooding to areas downstream of the site.

By designing the site's surface water drainage infrastructure in accordance with the advice reproduced in **Section 5**, the proposed development will not increase flood risk to third parties downslope. In consideration of the above, the proposed sustainable drainage system to be installed within the development is described in more detail in **Section 6** of this report.

5.0 DESIGN STANDARDS

Design of the site drainage infrastructure and Sustainable Drainage System (SuDS) is to be carried out in line with best practice, and to industry standard design procedures. Several publications, including design guidance and best practice guidance will be applied to different components of the final SuDS infrastructure. The sections below provide an overview of the design standards to be used on this project for various aspects of the SuDS infrastructure design.

5.1 The CIRIA SuDS Manual (C753)

This document is a comprehensive publication covering design, construction, operation, and maintenance of SuDS. The advice and best practice outlined in this document has been utilised in the design of the site SuDS features which have been detailed in this report.

5.2 Building Regulations Part H

Building Regulations Part H 'Drainage and Waste Disposal' covers the design and installation of surface water and foul water systems. All private drainage including pipes, manholes, down pipes, and other drainage infrastructure on the site should be designed and installed in accordance with this document.

5.3 The Wallingford Procedure

Developed by HR Wallingford, this publication covers the design of urban drainage systems. In addition, the document includes regional rainfall data for use in design for varying return period events. Basic sizing calculations for the proposed SuDS system and the estimation of the runoff volumes have been made using this method.

5.4 National Planning Policy Framework

The National Planning Policy Framework (NPPF) contains a policy relating to the appropriate assessment of flood risk within the UK. The associated technical guidance provides further details on the definitions, classifications and constraints used to apply national policy to new developments.

It contains details on flood zone definition, site specific FRAs, vulnerability classifications, appropriate development, climate change allowances, residual risk management, flood resilience, the sequential test, and the exception test.

5.5 Drainage Guidance for Cornwall

This document provides advice for Cornwall Council as the Local Planning Authority and those involved in developing the built environment on:

- The location of Critical Drainage Areas, where the flood risks from surface water runoff are likely to be most significant.
- Standards to be achieved by surface water drainage.
- The content of an FRA considering surface water drainage.
- Sustainable Drainage techniques (SuDS)
- Sources of further information

The Drainage Guidance for Cornwall (DGfC) document is currently under review though until an updated version is published, advice appropriate to the proposed development considered within this report is reproduced below for ease of reference.

The development site is not within a Critical Drainage Area though its area is close to 1 hectare, therefore using DGfC it is considered that the site may conservatively be classified as `E4 – Developments greater than or equal to 1 hectare' and the following guidance would apply:

"Outside Critical Drainage Areas - Greenfield Sites

E4 - Developments greater than or equal to 1 hectare

- Following the Building Regulations Drainage hierarchy, surface water should:
 - i. Drain to a soakaway or infiltration system designed in accordance with the SUDS Manual CIRIA C697, using a minimum of a 30-year return period storm.

Where a FRA demonstrates that infiltration is not possible: -

- ii. A sustainable drainage system shall be provided ensuring flow attenuation, no adverse impact on water quality and where possible habitat creation.
- The total discharge from the site should aim to mimic greenfield rates. These shall be no more than the theoretical greenfield run-off rates from each of the corresponding 1-, 10-, 30- and 100-year storms. When these values are less than 5 litres/second, a rate of 5 litres/second can be used. Attenuation may not be necessary if the discharge is directly to coastal waters. In these cases, the impact on the receiving environment in terms of habitat, erosion and water quality should be assessed.
- The design must take into account the appropriate allowance for increased rainfall from climate change. This should be based on the lifetime of the development, the guidance in Annex B of PPS25 and the PPS25 Practice Guide."

6.0 PROPOSED SUSTAINABLE DRAINAGE SYSTEM (SUDS)

The preferable drainage solution would be to drain all surface water runoff from the development using infiltration, in line with best practice guidance to deal with runoff as close to source as possible.

In order to determine whether infiltration would form a viable means of surface water disposal, site investigation work was carried out by Karn Geo-services in line with BRE 365/CIRIA 156 on the 25/09/2023.

Percolation tests were carried out in one location across the site; the results are summarised below and included in **Annex B**. The trial pit showed a fast rate of infiltration that is suitable for soakaway design as seen in **Table 2** below.

Test	st Soil Infiltration Rate (m/s) Soil Infiltration Rate (m/h	
1	3.04 x 10- ³	10.94
2	2.41 x 10- ³	8.67
3	2.58 x 10- ³	9.28

Table - 2 Soil Infiltration Rates

Location of the trial pit is included in Karn Geotechnic report attached in **Appendix B** and highlighted on drawing **J-3131-3002A** located in **Appendix A**. The worst-case value has been taken to size the infiltration system; based on **Table 2** above, this value has been taken as 8.67 m/hr.

6.1 Drainage Design

The introduction of the hardstanding areas, overrun area and widened access track around the new turbines will introduce impermeable areas. This infrastructure is proposed to be installed as imported hardcore capped with Type 1 material. This will result in a partially permeable road, overrun area and hardstanding areas. As such, these areas will be assumed to be 50% permeable.

Access Road

The Access track that runs through the centre of the site provides access to the existing turbines. The existing access track is typically 3.5m to 4.0m wide and constructed in compacted stone granular material (sub-base).

The central spine of the existing access track will be retained within the proposed scheme and new sidetracks will be added emanating off the central track to provide local access to the new turbine locations. The existing central track will be widened by approximately 2m in similar materials to the existing track to facilitate the new development.

The track is to be widened using compacted subbase material (Type 1 subbase to 803 to the (Specification for Highway Works) to match the existing construction. This material is reasonably permeable in the loose state but becomes semi permeable when compacted as the fine material binds together on the top surface. For the purposes of the drainage analysis, this material is assumed to be 50% permeable.

It is proposed to construct gravel-filled trenches along the lower edges of the widened access track to infiltrate water into the surrounding ground. This has been designed on the basis and using a typical finished access track which has been widened to 5.5m, the track has the potential to develop a runoff of 0.1l/s per metre length of track. Calculations in Micro-Drainage show that a gravel filled trench of 0.3m width would fill to a depth of about 0.28m in an extreme event (1 in 100 year plus 50% climate change). As such, a 0.3m wide by 0.5m deep infiltration trench is proposed.

A 1m wide grass filter strip should be provided between the edge of the track and the filter drain if practicable. Check dams should be provided along the length of the drain at approximately 15m centres to prevent water flowing direct to the lower end of the drain.

The proposed infiltration trench should be installed along the lower edge of all lengths of the track subject to widening.

A typical section through the proposed track and trench is shown below in Figure 11

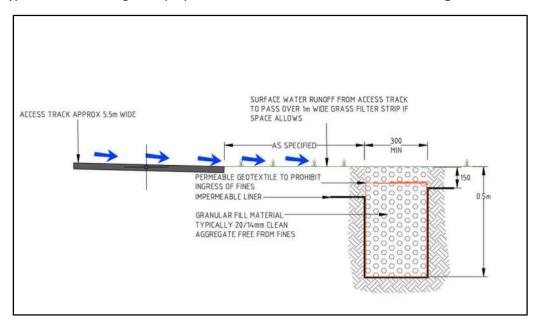


Figure 11 – Proposed Section Through Track Subject to Widening

Overrun Area

As part of the development, it is proposed to install a temporary overrun area at the junction of the main site access track with the C0055 public highway: this is to allow large vehicles to negotiate the junction into the site. The overrun area will be constructed in compacted subbase material similar to the trackway.

A plan layout showing the overrun area is provided below in **Figure 12.** The total area of the overrun area plus bellmouth is approximately 740m² or an effective impermeable area of 370m² based on 50% impermeability. Ground levels are such that the area is likely to have a fall towards a low point at the channel line with the public road.

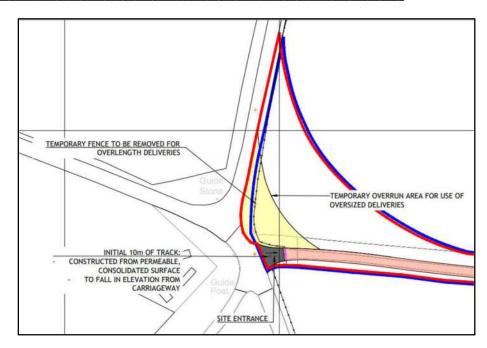


Figure 12 – Plan showing Proposed Overrun Works

In order to deal with potential runoff from the overrun area, it is proposed to install a set of three gullies at the local low point, with the gulley grids set in localized dished concrete aprons and the ground in the overrun area graded towards the gullies. Flow collected at the gullies would be drained to a separate soakaway installed at the rear of the overrun area away from the principal wheel track lines.

Calculations in Micro-Drainage show that a soakaway constructed from modular infiltration units of size 4m long by 2m wide by 0.8m deep would be sufficient to manage flows from an extreme rainfall event (1 in 100-year plus climate change); associated calculations are attached in **Annex A.** Drainage proposals for the overrun area are shown in **Figure 13 below.**

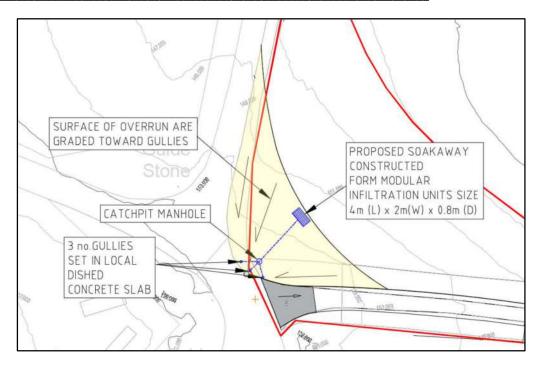


Figure 13 Plan showing Proposed Drainage Works in Overrun Area

Turbines Hardstanding Areas

It is proposed to drain the impermeable areas for the turbines into a series of shallow swales laid along the lower perimeter of the hardstanding areas for the turbines: these will convey flows to individual soakaways. A total of 4 soakaways have been designed for the hard standing areas for proposed turbines.

The foundation base to the turbines will be buried and will allow infiltration into the finished surfacing over the base. The footprint of the base is within the coverage of the hardstanding area, so it will be treated as being 50% permeable by default.

The following items have been taken into account when considering impermeable areas and the sizing of soakaways:

- Turbine 2 = 2500m² x 50% = 1,250m²
- Turbine $3 = 2500 \text{m}^2 \times 50\% = 1,250 \text{m}^2$
- Turbine $4 = 3300 \text{m}^2 \times 50\% = 1,650 \text{m}^2$
- Turbine 5 = 3000m² x 50% = 1,500m²
- Access track between Turbine 2 and 3 = 1500m² x 50% = 750m²
- Electricity substation = 40m²
- Total Equivalent Impermeable Area = 6,440m² (0.644 ha)

Building Regulations Part H places several restrictions on the siting on soakaways which should be complied with. This includes that soakaways should not be sited within 5m of any building or road. They should also be a sufficient distance away from other soakaways or drainage fields so that the overall soakage capacity of the ground is not exceeded or effectiveness of the units impaired. At this stage of the development, connections to the soakaway are indicative only.

The proposed soakaways have been sized using MicroDrainage software with a 50% allowance for Climate Change and an increased Factor of Safety to 10 due to the single percolation test

pit. The soakaways are based on Aquacell modular infiltration units with a 95% void ratio. The dimension of each soakaway is shown below in **Table 3** below and in drawing **J-3131-3002A** in **Appendix A**.

Soakaway	Dimensions (W x L x D)
B-Turbine 2 and access road between T2 and 3	7.5m x 8m x 1.2m
C- Turbine 3	6m x 8m x 0.8m
D- Turbine 4	6m x 8m x 1.2m
E- Turbine 5	5.5m x 8m x 1.2m
F- Substation	1.5m x 1m x 0.8m

Table - 3 Proposed Soakaway Dimensions

6.2 Exceedance Events

In the unlikely event of a storm in excess of the 1 in 100-year return period rainfall event occurring (including climate change allowance), or if the proposed drainage systems were to become blocked, water may flood the system. In this case it is considered that the overflowing water would run over ground in a south to north direction. Overland flows are also shown to flow across the site in an east to west direction towards the access point to the site as per the predevelopment scenario. Exceedance flow direction arrows are shown on the drawings.

Due to the storage provided in the proposed drainage systems, and design standard used (1 in 100-year storm with an additional 50% allowance for the effects of climate change), any exceedance flows would be lower than would flow off the site in the pre-development scenario for a similar storm event. It is apparent that overland exceedance routes are unaffected by the proposed development.

6.3 Maintenance

The proposed surface water drainage systems will remain private and will not be offered for adoption. Management and maintenance responsibility for the infrastructure will be the responsibility of the site owner/operator.

Maintenance activities for the systems will broadly comprise regular maintenance, occasional tasks, and remedial work where necessary, as per the guidance in the CIRIA SuDS Manual C753 which is summarised in **Table 4, 5 and 6 below**. Inspection of the surface water drainage systems can generally be undertaken during routine site visits e.g., for grass cutting, leaf collection and/or litter collection.

J-3131 FRA and Hydrological Assessment and SuDS- Bears Downs Wind Turbine Development

SOAKAWAYS	SOAKAWAYS				
Regular	Inspect for sediment and debris in pre- treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	Annually			
maintenance	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)			
	Trimming any roots that may be causing blockages	Annually (or as required)			
Occasional maintenance	Remove sediment and debris from pre- treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	As required, based on inspections			
Remedial actions	Reconstruct soakaway and/or replace or clean void fill, if performance deteriorates or failure occurs	As required			
actions	Replacement of clogged geotextile (will required reconstruction of soakaway)	As required			
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year then annually			
inonitoring	Check soakaway to ensure emptying is occurring	Annually			

Table 4 – Soakaway, Typical Maintenance Activity Schedule

SWALES		
	Remove litter and debris	Monthly, or as required
	Cut grass – to retain grass height 100-150mm	Monthly (during growing season), or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
Regular maintenance	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, or when required
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets and facility surface for silt accumulation, establish silt removal frequencies	Half yearly
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swale area
	Repair erosion or other damage by re-turfing or reseeding	As required
	Relevel uneven surfaces and reinstate design profile unless there is a design flaw	As required
Remedial actions	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required
	Remove and disposed of oils or petrol residues using safe standard practices	As required

Figure 5 – Swales, Typical Maintenance Activity Schedule

Infiltration Trench		
	Remove litter (including leaf litter) and debris from Infiltration Trench surface, access chambers and pre-treatment devices	Monthly (or as required)
Regular maintenance	Inspect Infiltration Trench surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly
	Inspect pre-treatment systems, inlets and pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly
	Remove sediment from pre- treatment devices	Six monthly, or as required
Occasional maintenance	Remove or control tree roots where they are encroaching the sides of the Infiltration trench, using recommended methods (e.g. NJUG, 2007 or BS 3998:2010)	As required
occasional maintenance	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required
	Clear pipework of blockages	As required

Figure 6 – Infiltration Trench, Typical Maintenance Activity Schedule

6.4 Residual Risks After Development

Rainfall over and above the design event could cause the sustainable drainage system to flood, however, any exceedance flows would be dealt with as outlined above.

The sustainable surface water drainage systems proposed in this report have been designed for the volume of surface runoff resulting from the proposed development, thus any unauthorised future connections into the proposed networks could potentially overload the system. Any future development on the site, beyond the current proposal, should be suitably planned and considered.

6.5 Construction Stage Drainage

In order to limit the potential for silt discoloured water to run off site during construction stage, the silt fencing should be constructed at the front end of the works. The designed infiltration systems should be the last stage of the construction process, to prevent silt build up or blockages inside the drainage systems.

During construction phase, the impermeable area on site will increase due to the creation of temporary car parking and office units being placed on site. In order to mitigate the surface water runoff before completion, a line of silt fencing should also be installed downslope of the works area during the construction phase. Additionally, moveable straw bales should be provided at the lower end of the access track to allow interception and filtration of any runoff bypassing the SUDS system along the access.

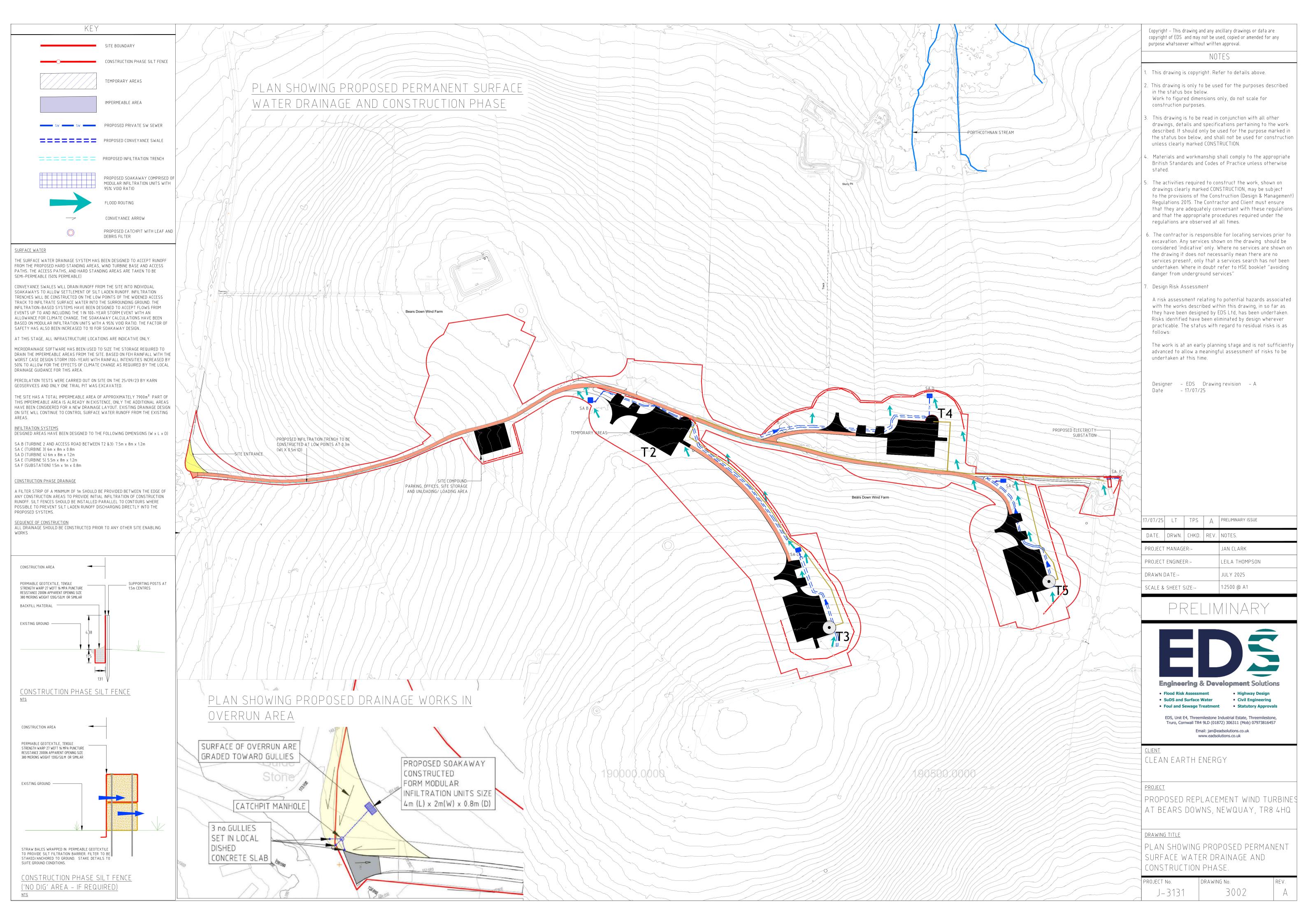
7.0 SUMMARY AND CONCLUSIONS

This study has investigated mechanisms of flooding and the potential for Sustainable Drainage (SuDS) to be installed as part of the development of 4no. replacement wind turbines at Bears Down Wind Farm, Trevilledor Cross, Newquay, TR8 4HQ.

Environment Agency (EA) indicative flood mapping shows that the development site is located entirely within Flood Zone 1; at little or no risk from tidal or fluvial flooding and is therefore for all types of development. The development proposal is for an area greater than 1 hectare in size, therefore further consideration of surface water drainage has been undertaken.

Additional investigation of the existing hydrology and hydrogeology has been undertaken at the request of Clean Earth Energy for completeness.

The study has investigated alternative mechanisms for flooding at the site and has concluded that the site is not at risk of flooding and will not cause an increase in flood risk elsewhere once the proposed sustainable drainage system is operational.


Infiltration testing undertaken on site has demonstrated that the site is suitable for the use of an infiltration-based surface water SuDS. The drainage proposal is described in more detail in this report and as shown in **Appendix A** with associated calculations located in **Annex B**.

Proposals have been provided to mitigate against the escape of silty runoff water during the construction stage.

Provided the recommendations outlined in this report are adopted in the development proposal then there is the capacity to manage the surface water runoff from the development onsite. The proposed drainage infrastructure has been designed in accordance with guidance outlined in the NPPF, PPG, and Drainage Guidance for Cornwall and therefore the development is entirely appropriate on this site from a flood risk perspective.

APPENDIX A

PROPOSED LAYOUT INCLUDING CONCEPTUAL SuDS PLAN

APPENDIX B CALCULATIONS

EDS Ltd.

Unit E4 Threemilestone Ind Estate
Truro
Cornwal TR4 9LD

ē	Project				Job no.	
•		Bears Dow	J-3	131		
	Calcs for		Start page no./Revision			
	Runoff From Access Road					1
	Calcs by TPS	Calcs date 18/04/2024	Checked by	Checked date	Approved by	Approved date

DESIGN RAINFALL

In accordance with the Wallingford Procedure

Tedds calculation version 2.0.01

Design rainfall intensity

Location of catchment areaPlymouthStorm durationD = 10 minReturn periodPeriod = 100 yr

Ratio 60 min to 2 day rainfall of 5 yr return period r = 0.300

5-year return period rainfall of 60 minutes duration M5_60min = **18.0** mm

Increase of rainfall intensity due to global warming $p_{climate} = 30 \%$ Factor Z1 (Wallingford procedure) Z1 = 0.49

Rainfall for 10min storm with 5 year return period $M5_10min_i = Z1 \times M5_60min \times (1 + p_{climate}) = 11.5 mm$

Factor Z2 (Wallingford procedure) Z2 = **1.93**

Rainfall for 10min storm with 100 year return period M100_10min = $Z2 \times M5_10min_i$ = **22.2** mm Design rainfall intensity $I_{max} = M100_10min / D = 133.0 \text{ mm/hr}$

Maximum surface water runoff

Catchment area $A_{catch} = 6 \text{ m}^2$ Percentage of area that is impermeable p = 50 %

Maximum surface water runoff $Q_{max} = A_{catch} \times p \times I_{max} = \textbf{0.1} \text{ I/s}$

Engineering and Development Solu	Page 1	
Unit E4	Bears Down Wind Farm	
Threemilestone Industrial Es	Soakaway to Overrun Area	
Truro, TR4 9LD		Micro
Date 18/04/2024	Designed by TPS	Drainage
File J-3131 Overrun Soakaway	Checked by	nialilade
Innovyze	Source Control 2020.1	•

Summary of Results for 100 year Return Period (+50%)

Half Drain Time : 5 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
15	min	Summer	98.597	0.597	12.2	4.5	ОК
30	min	Summer	98.621	0.621	12.4	4.7	ОК
60	min	Summer	98.530	0.530	11.5	4.0	O K
120	min	Summer	98.287	0.287	9.2	2.2	O K
180	min	Summer	98.153	0.153	7.9	1.2	O K
240	min	Summer	98.074	0.074	7.1	0.6	O K
360	min	Summer	98.042	0.042	5.8	0.3	O K
480	min	Summer	98.034	0.034	4.7	0.3	O K
600	min	Summer	98.029	0.029	4.0	0.2	O K
720	min	Summer	98.025	0.025	3.5	0.2	O K
960	min	Summer	98.021	0.021	2.9	0.2	O K
1440	min	Summer	98.015	0.015	2.1	0.1	O K
2160	min	Summer	98.011	0.011	1.6	0.1	O K
2880	min	Summer	98.009	0.009	1.2	0.1	O K
4320	min	Summer	98.007	0.007	0.9	0.1	O K
5760	min	Summer	98.006	0.006	0.8	0.0	O K
7200	min	Summer	98.005	0.005	0.7	0.0	O K
8640	min	Summer	98.004	0.004	0.5	0.0	O K
10080	min	Summer	98.004	0.004	0.5	0.0	O K
15	min	Winter	98.673	0.673	12.9	5.1	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	155.298	0.0	12
30	min	Summer	107.084	0.0	20
60	min	Summer	70.705	0.0	36
120	min	Summer	42.286	0.0	68
180	min	Summer	31.523	0.0	96
240	min	Summer	25.633	0.0	126
360	min	Summer	19.132	0.0	182
480	min	Summer	15.531	0.0	242
600	min	Summer	13.188	0.0	300
720	min	Summer	11.523	0.0	360
960	min	Summer	9.274	0.0	482
1440	min	Summer	6.793	0.0	726
2160	min	Summer	4.931	0.0	1072
2880	min	Summer	3.916	0.0	1460
4320	min	Summer	2.816	0.0	2156
5760	min	Summer	2.236	0.0	2856
7200	min	Summer	1.880	0.0	3608
8640	min	Summer	1.639	0.0	4456
10080	min	Summer	1.465	0.0	4976
15	min	Winter	155.298	0.0	13

©1982-2020 Innovyze

Engineering and Development Solu	Page 2	
Unit E4	Bears Down Wind Farm	
Threemilestone Industrial Es	Soakaway to Overrun Area	
Truro, TR4 9LD		Micro
Date 18/04/2024	Designed by TPS	Drainage
File J-3131 Overrun Soakaway	Checked by	niailiade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+50%)

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
30	min	Winter	98.653	0.653	12.7	5.0	ОК
60	min	Winter	98.488	0.488	11.1	3.7	ОК
120	min	Winter	98.181	0.181	8.2	1.4	O K
180	min	Winter	98.050	0.050	6.9	0.4	O K
240	min	Winter	98.040	0.040	5.6	0.3	ОК
360	min	Winter	98.030	0.030	4.2	0.2	O K
480	min	Winter	98.025	0.025	3.4	0.2	O K
600	min	Winter	98.021	0.021	2.9	0.2	O K
720	min	Winter	98.018	0.018	2.5	0.1	O K
960	min	Winter	98.015	0.015	2.0	0.1	O K
1440	min	Winter	98.011	0.011	1.5	0.1	O K
2160	min	Winter	98.008	0.008	1.1	0.1	O K
2880	min	Winter	98.007	0.007	0.9	0.1	O K
4320	min	Winter	98.005	0.005	0.7	0.0	O K
5760	min	Winter	98.004	0.004	0.5	0.0	O K
7200	min	Winter	98.003	0.003	0.4	0.0	O K
8640	min	Winter	98.003	0.003	0.4	0.0	O K
10080	min	Winter	98.003	0.003	0.4	0.0	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	107.084	0.0	21
60	min	Winter	70.705	0.0	38
120	min	Winter	42.286	0.0	68
180	min	Winter	31.523	0.0	92
240	min	Winter	25.633	0.0	124
360	min	Winter	19.132	0.0	182
480	min	Winter	15.531	0.0	246
600	min	Winter	13.188	0.0	304
720	min	Winter	11.523	0.0	356
960	min	Winter	9.274	0.0	488
1440	min	Winter	6.793	0.0	708
2160	min	Winter	4.931	0.0	1116
2880	min	Winter	3.916	0.0	1420
4320	min	Winter	2.816	0.0	2124
5760	min	Winter	2.236	0.0	2720
7200	min	Winter	1.880	0.0	3440
8640	min	Winter	1.639	0.0	4736
10080	min	Winter	1.465	0.0	5552

Engineering and Development Solutions Ltd				
Unit E4	Bears Down Wind Farm			
Threemilestone Industrial Es	Soakaway to Overrun Area			
Truro, TR4 9LD		Micro		
Date 18/04/2024	Designed by TPS	Drainage		
File J-3131 Overrun Soakaway	Checked by	pramade		
Innovyze	Source Control 2020.1			

Rainfall Details

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						2013
Site Location	GB	189875	67794	SW	89875	67794
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+50

Time Area Diagram

Total Area (ha) 0.037

 Time From:
 (mins) (ha)

 0
 4

 0
 0

Engineering and Development Solu	Page 4	
Unit E4	Bears Down Wind Farm	
Threemilestone Industrial Es	Soakaway to Overrun Area	
Truro, TR4 9LD		Micro
Date 18/04/2024	Designed by TPS	Drainage
File J-3131 Overrun Soakaway	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 98.000 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 8.67000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 8.67000

Depth	(m)	Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf. Area	(m²)
0.	000		8.0		8.0	0.	.900		0.0		17.6
0.	800		8.0		17.6						

©1982-2020 Innovyze

Engineering and Development Sol	Page 1	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Mirro
Date 28/09/2023 13:47	Designed by StellaMitchell	Drainage
File J-3131 Substation SA	Checked by	Diali larie
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+50%)

Half Drain Time : 9 minutes.

Storm		Max	Max	Max	Max	Status	
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	98.473	0.473	0.9	0.7	O K
30	min	Summer	98.522	0.522	1.0	0.7	O K
60	min	Summer	98.503	0.503	1.0	0.7	O K
120	min	Summer	98.371	0.371	0.8	0.5	O K
180	min	Summer	98.284	0.284	0.7	0.4	ОК
240	min	Summer	98.221	0.221	0.6	0.3	ОК
360	min	Summer	98.135	0.135	0.5	0.2	O K
480	min	Summer	98.082	0.082	0.5	0.1	ОК
600	min	Summer	98.052	0.052	0.4	0.1	ОК
720	min	Summer	98.045	0.045	0.4	0.1	ОК
960	min	Summer	98.036	0.036	0.3	0.1	ОК
1440	min	Summer	98.026	0.026	0.2	0.0	ОК
2160	min	Summer	98.019	0.019	0.2	0.0	O K
2880	min	Summer	98.015	0.015	0.1	0.0	O K
4320	min	Summer	98.011	0.011	0.1	0.0	ОК
5760	min	Summer	98.009	0.009	0.1	0.0	ОК
7200	min	Summer	98.008	0.008	0.1	0.0	ОК
8640	min	Summer	98.007	0.007	0.1	0.0	ОК
10080	min	Summer	98.006	0.006	0.0	0.0	ОК
		Winter		0.533	1.0	0.8	ОК

Storm Event		Rain (mm/hr)		Time-Peak (mins)	
15	min	Summer	155.298	0.0	13
30	min	Summer	107.084	0.0	21
60	min	Summer	70.705	0.0	38
120	min	Summer	42.286	0.0	70
180	min	Summer	31.523	0.0	100
240	min	Summer	25.633	0.0	132
360	min	Summer	19.132	0.0	190
480	min	Summer	15.531	0.0	250
600	min	Summer	13.188	0.0	306
720	min	Summer	11.523	0.0	366
960	min	Summer	9.274	0.0	490
1440	min	Summer	6.793	0.0	734
2160	min	Summer	4.931	0.0	1100
2880	min	Summer	3.916	0.0	1456
4320	min	Summer	2.816	0.0	2132
5760	min	Summer	2.236	0.0	2880
7200	min	Summer	1.880	0.0	3648
8640	min	Summer	1.639	0.0	4384
10080	min	Summer	1.465	0.0	5120
15		Winter	155.298	0.0	14

©1982-2020 Innovyze

Engineering and Development Solutions Ltd					
Unit E4					
Threemilestone Industrial					
Truro, TR4 9LD		Micro			
Date 28/09/2023 13:47	Designed by StellaMitchell	Drainage			
File J-3131 Substation SA	Checked by	Dialilade			
Innovyze	Source Control 2020.1.3				

Summary of Results for 100 year Return Period (+50%)

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
30	min	Winter	98.574	0 574	1.1	0.8	ОК
			98.516		1.0		
			98.334				
180	mın	Winter	98.225	0.225	0.6	0.3	
240	min	Winter	98.152	0.152	0.5	0.2	O K
360	min	Winter	98.063	0.063	0.4	0.1	O K
480	min	Winter	98.043	0.043	0.4	0.1	ОК
600	min	Winter	98.037	0.037	0.3	0.1	ОК
720	min	Winter	98.032	0.032	0.3	0.0	ОК
960	min	Winter	98.026	0.026	0.2	0.0	ОК
1440	min	Winter	98.019	0.019	0.2	0.0	ОК
2160	min	Winter	98.014	0.014	0.1	0.0	ОК
2880	min	Winter	98.011	0.011	0.1	0.0	O K
4320	min	Winter	98.008	0.008	0.1	0.0	O K
5760	min	Winter	98.007	0.007	0.1	0.0	O K
7200	min	Winter	98.006	0.006	0.0	0.0	ОК
8640	min	Winter	98.005	0.005	0.0	0.0	ОК
10080	min	Winter	98.004	0.004	0.0	0.0	ОК

	Storm Event			Flooded Volume (m³)	Time-Peak (mins)
30	min	Winter	107.084	0.0	23
60	min	Winter	70.705	0.0	40
120	min	Winter	42.286	0.0	72
180	min	Winter	31.523	0.0	104
240	min	Winter	25.633	0.0	134
360	min	Winter	19.132	0.0	190
480	min	Winter	15.531	0.0	246
600	min	Winter	13.188	0.0	304
720	min	Winter	11.523	0.0	366
960	min	Winter	9.274	0.0	490
1440	min	Winter	6.793	0.0	740
2160	min	Winter	4.931	0.0	1080
2880	min	Winter	3.916	0.0	1484
4320	min	Winter	2.816	0.0	2232
5760	min	Winter	2.236	0.0	2872
7200	min	Winter	1.880	0.0	3600
8640	min	Winter	1.639	0.0	4400
10080	min	Winter	1.465	0.0	5064

Engineering and Development S	Page 3	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Mirro
Date 28/09/2023 13:47	Designed by StellaMitchell	Drainage
File J-3131 Substation SA	Checked by	Diamage
Innovvze	Source Control 2020.1.3	

Rainfall Details

Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 189875 67794 SW 89875 67794 Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +50

Time Area Diagram

Total Area (ha) 0.004

Time (mins) Area From: To: (ha)

Engineering and Development Solutions Ltd						
Unit E4						
Threemilestone Industrial						
Truro, TR4 9LD		Mirro				
Date 28/09/2023 13:47	Designed by StellaMitchell	Desipago				
File J-3131 Substation SA	Checked by	niailiade				
Innovvze	Source Control 2020.1.3					

Storage is Online Cover Level (m) 100.000

<u>Cellular Storage Structure</u>

Invert Level (m) 98.000 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 8.67000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 8.67000

pth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	1 (m)	Area	(m²)	Inf.	Area	(m²)
0.0	000		1.5			1.5	(.900		0.0			5.5
0.8	800		1.5			5.5							

Engineering and Development Solutions Ltd P					
Unit E4	Bears Down Wind Farm				
Threemilestone Industrial Es	Soakaway to access track				
Truro, TR4 9LD		Micro			
Date 18/04/2024	Designed by TPS	Drainage			
File J-3131 Track Soakaway.SRCX	Checked by	Dialilade			
Innovyze	Source Control 2020.1				

Half Drain Time : 0 minutes.

Storm			Max	Max	Max	Max	Status
Event		Level	Depth	Infiltration	Volume		
		(m)	(m)	(1/s)	(m³)		
15	min	Summer	99.275	0.275	2.2	0.1	O K
30	min	Summer	99.256	0.256	2.0	0.0	O K
60	min	Summer	99.211	0.211	1.5	0.0	O K
120	min	Summer	99.154	0.154	1.0	0.0	O K
180	min	Summer	99.126	0.126	0.8	0.0	O K
240	min	Summer	99.108	0.108	0.6	0.0	O K
360	min	Summer	99.086	0.086	0.5	0.0	O K
480	min	Summer	99.072	0.072	0.4	0.0	O K
600	min	Summer	99.063	0.063	0.3	0.0	O K
720	min	Summer	99.056	0.056	0.3	0.0	O K
960	min	Summer	99.048	0.048	0.2	0.0	O K
1440	min	Summer	99.041	0.041	0.2	0.0	O K
2160	min	Summer	99.035	0.035	0.1	0.0	O K
2880	min	Summer	99.031	0.031	0.1	0.0	O K
4320	min	Summer	99.027	0.027	0.1	0.0	O K
5760	min	Summer	99.024	0.024	0.1	0.0	O K
7200	min	Summer	99.021	0.021	0.0	0.0	O K
8640	min	Summer	99.020	0.020	0.0	0.0	ОК
10080	min	Summer	99.019	0.019	0.0	0.0	ОК
15	min	Winter	99.275	0.275	2.2	0.1	O K

	Stor	m	Rain	Flooded	Time-Peak
Event		(mm/hr)	Volume	(mins)	
				(m³)	
15	min	Summer	155.298	0.0	10
30	min	Summer	107.084	0.0	18
60	min	Summer	70.705	0.0	32
120	min	Summer	42.286	0.0	62
180	min	Summer	31.523	0.0	92
240	min	Summer	25.633	0.0	122
360	min	Summer	19.132	0.0	180
480	min	Summer	15.531	0.0	242
600	min	Summer	13.188	0.0	302
720	min	Summer	11.523	0.0	366
960	min	Summer	9.274	0.0	478
1440	min	Summer	6.793	0.0	710
2160	min	Summer	4.931	0.0	1068
2880	min	Summer	3.916	0.0	1448
4320	min	Summer	2.816	0.0	2200
5760	min	Summer	2.236	0.0	2864
7200	min	Summer	1.880	0.0	3552
8640	min	Summer	1.639	0.0	4288
10080	min	Summer	1.465	0.0	5056
15	min	Winter	155.298	0.0	10

Engineering and Development Solutions Ltd					
Unit E4	Bears Down Wind Farm				
Threemilestone Industrial Es	Soakaway to access track				
Truro, TR4 9LD		Micro			
Date 18/04/2024	Designed by TPS	Drainage			
File J-3131 Track Soakaway.SRCX	Checked by	prairiage			
Innovyze	Source Control 2020.1	•			

Storm Event			Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	99.234	0.234	1.8	0.0	ОК
60	min	Winter	99.180	0.180	1.2	0.0	O K
120	min	Winter	99.123	0.123	0.7	0.0	O K
180	min	Winter	99.098	0.098	0.6	0.0	O K
240	min	Winter	99.083	0.083	0.5	0.0	O K
360	min	Winter	99.065	0.065	0.3	0.0	O K
480	min	Winter	99.054	0.054	0.3	0.0	O K
600	min	Winter	99.049	0.049	0.2	0.0	O K
720	min	Winter	99.046	0.046	0.2	0.0	O K
960	min	Winter	99.041	0.041	0.2	0.0	O K
1440	min	Winter	99.035	0.035	0.1	0.0	O K
2160	min	Winter	99.030	0.030	0.1	0.0	O K
2880	min	Winter	99.026	0.026	0.1	0.0	O K
4320	min	Winter	99.023	0.023	0.1	0.0	O K
5760	min	Winter	99.021	0.021	0.0	0.0	O K
7200	min	Winter	99.018	0.018	0.0	0.0	O K
8640	min	Winter	99.018	0.018	0.0	0.0	O K
10080	min	Winter	99.016	0.016	0.0	0.0	ОК

Storm			m	Rain	Flooded	Time-Peak
	Event			(mm/hr)	Volume	(mins)
					(m³)	
	30	min	Winter	107.084	0.0	18
	60	min	Winter	70.705	0.0	32
	120	min	Winter	42.286	0.0	62
	180	min	Winter	31.523	0.0	92
	240	min	Winter	25.633	0.0	124
	360	min	Winter	19.132	0.0	184
	480	min	Winter	15.531	0.0	240
	600	min	Winter	13.188	0.0	298
	720	min	Winter	11.523	0.0	362
	960	min	Winter	9.274	0.0	470
	1440	min	Winter	6.793	0.0	722
	2160	min	Winter	4.931	0.0	1032
	2880	min	Winter	3.916	0.0	1464
	4320	min	Winter	2.816	0.0	2220
	5760	min	Winter	2.236	0.0	2840
	7200	min	Winter	1.880	0.0	3808
	8640	min	Winter	1.639	0.0	4616
1	10080	min	Winter	1.465	0.0	5216

Engineering and Development Solu	Page 3	
Unit E4	Bears Down Wind Farm	
Threemilestone Industrial Es	Soakaway to access track	
Truro, TR4 9LD		Micro
Date 18/04/2024	Designed by TPS	Drainage
File J-3131 Track Soakaway.SRCX	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Rainfall Model Return Period (years)						FEH 100
FEH Rainfall Version						2013
Site Location	GB	189875	67794	SW	89875	67794
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.840
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+50

Time Area Diagram

Total Area (ha) 0.003

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.003

Engineering and Development Solutions Ltd					
Unit E4	Bears Down Wind Farm				
Threemilestone Industrial Es	Soakaway to access track				
Truro, TR4 9LD		Micro			
Date 18/04/2024	Designed by TPS	Drainage			
File J-3131 Track Soakaway.SRCX	Checked by	pramade			
Innovyze	Source Control 2020.1				

Storage is Online Cover Level (m) 100.000

Infiltration Trench Structure

Infiltration	Coefficient Bas	e (m/h	r)	8.67000		Trench	Width	(m)	0.3
Infiltration	Coefficient Sid	e (m/h	r)	8.67000		Trench 1	Length	(m)	10.0
	Safet	y Fact	or	3.0		S	lope (1	:X)	17.0
		Porosi	tу	0.30		Cap Volume	Depth	(m)	0.000
	Invert L	evel (m)	99.000	Cap	Infiltration	Depth	(m)	0.000

Engineering and Development Solutions Ltd				
Unit E4				
Threemilestone Industrial				
Truro, TR4 9LD		Mirco		
Date 29/09/2023 12:48	Designed by StellaMitchell	Designation		
File J-3131 TURBINE 2 &	Checked by	pramade		
Innovyze	Source Control 2020.1.3			

Half Drain Time : 29 minutes.

Storm		Max	Max	Max	Max	Status	
	Event	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	98.758	0.758	20.1	43.2	O K
30	min	Summer	98.902	0.902	21.2	51.4	O K
60	min	Summer	98.967	0.967	21.7	55.1	O K
120	min	Summer	98.846	0.846	20.8	48.2	O K
180	min	Summer	98.737	0.737	20.0	42.0	O K
240	min	Summer	98.638	0.638	19.2	36.3	O K
360	min	Summer	98.465	0.465	17.9	26.5	O K
480	min	Summer	98.328	0.328	16.9	18.7	O K
600	min	Summer	98.222	0.222	16.1	12.6	ОК
720	min	Summer	98.142	0.142	15.5	8.1	ОК
960	min	Summer	98.054	0.054	14.9	3.1	ОК
1440	min	Summer	98.038	0.038	11.2	2.1	O K
2160	min	Summer	98.027	0.027	8.1	1.6	O K
2880	min	Summer	98.022	0.022	6.4	1.2	O K
4320	min	Summer	98.016	0.016	4.7	0.9	O K
5760	min	Summer	98.013	0.013	3.8	0.7	O K
7200	min	Summer	98.011	0.011	3.2	0.6	O K
8640	min	Summer	98.009	0.009	2.7	0.5	ОК
10080	min	Summer	98.008	0.008	2.4	0.5	O K
15	min	Winter	98.873	0.873	21.0	49.7	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
15	min	Summer	155.298	0.0	16	
30	min	Summer	107.084	0.0	26	
60	min	Summer	70.705	0.0	44	
120	min	Summer	42.286	0.0	78	
180	min	Summer	31.523	0.0	110	
240	min	Summer	25.633	0.0	144	
360	min	Summer	19.132	0.0	206	
480	min	Summer	15.531	0.0	266	
600	min	Summer	13.188	0.0	326	
720	min	Summer	11.523	0.0	382	
960	min	Summer	9.274	0.0	490	
1440	min	Summer	6.793	0.0	734	
2160	min	Summer	4.931	0.0	1092	
2880	min	Summer	3.916	0.0	1448	
4320	min	Summer	2.816	0.0	2196	
5760	min	Summer	2.236	0.0	2880	
7200	min	Summer	1.880	0.0	3608	
8640	min	Summer	1.639	0.0	4336	
10080	min	Summer	1.465	0.0	5032	
15	min	Winter	155.298	0.0	16	
		©1982-	-2020 I	nnovyze		

Engineering and Development Solutions Ltd			
Unit E4			
Threemilestone Industrial			
Truro, TR4 9LD		Micro	
Date 29/09/2023 12:48	Designed by StellaMitchell	Drainage	
File J-3131 TURBINE 2 &	Checked by	Dialilacie	
Innovyze	Source Control 2020.1.3		

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
20		77 f b	00 040	1 040	22.2	F0 7	0.77
			99.048		22.3		
			99.113				
120	min	Winter	98.922	0.922	21.3	52.5	O K
180	min	Winter	98.751	0.751	20.1	42.8	O K
240	min	Winter	98.600	0.600	18.9	34.2	O K
360	min	Winter	98.356	0.356	17.1	20.3	O K
480	min	Winter	98.179	0.179	15.8	10.2	O K
600	min	Winter	98.066	0.066	14.9	3.8	O K
720	min	Winter	98.046	0.046	13.6	2.6	O K
960	min	Winter	98.037	0.037	11.0	2.1	O K
1440	min	Winter	98.027	0.027	8.1	1.5	O K
2160	min	Winter	98.020	0.020	5.9	1.1	O K
2880	min	Winter	98.016	0.016	4.7	0.9	O K
4320	min	Winter	98.011	0.011	3.3	0.6	O K
5760	min	Winter	98.009	0.009	2.7	0.5	O K
7200	min	Winter	98.008	0.008	2.3	0.4	O K
8640	min	Winter	98.007	0.007	2.0	0.4	O K
10080	min	Winter	98.006	0.006	1.9	0.4	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
30	min	Winter	107.084	0.0	28
60	min	Winter	70.705	0.0	46
120	min	Winter	42.286	0.0	84
180	min	Winter	31.523	0.0	118
240	min	Winter	25.633	0.0	152
360	min	Winter	19.132	0.0	214
480	min	Winter	15.531	0.0	272
600	min	Winter	13.188	0.0	320
720	min	Winter	11.523	0.0	368
960	min	Winter	9.274	0.0	488
1440	min	Winter	6.793	0.0	734
2160	min	Winter	4.931	0.0	1092
2880	min	Winter	3.916	0.0	1460
4320	min	Winter	2.816	0.0	2156
5760	min	Winter	2.236	0.0	2816
7200	min	Winter	1.880	0.0	3632
8640	min	Winter	1.639	0.0	4320
10080	min	Winter	1.465	0.0	4944

Engineering and Development Sol	Page 3	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Mirro
Date 29/09/2023 12:48	Designed by StellaMitchell	Drainage
File J-3131 TURBINE 2 &	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	'

Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 189875 67794 SW 89875 67794 Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +50

Time Area Diagram

Total Area (ha) 0.200

Time (mins) Area
From: To: (ha)

0 4 0.200

Engineering and Development Solutions Ltd				
Unit E4				
Threemilestone Industrial				
Truro, TR4 9LD		Micro		
Date 29/09/2023 12:48	Designed by StellaMitchell	Desinado		
File J-3131 TURBINE 2 &	Checked by	niailiade		
Innovvze	Source Control 2020.1.3	•		

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 98.000 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 8.67000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 8.67000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000		60.0			60.0	1	.300		0.0			97.2
1.	200		60.0			97.2							

Engineering and Development Sol	Page 1	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Micco
Date 28/09/2023 13:52	Designed by StellaMitchell	Drainage
File J-3131 Turbine 3 SA	Checked by	pramarje
Innovyze	Source Control 2020.1.3	

Half Drain Time : 21 minutes.

Storm		Max	Max	Max	Max	Status	
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	98.556	0.556	15.3	25.3	O K
30	min	Summer	98.649	0.649	15.9	29.6	O K
60	min	Summer	98.681	0.681	16.2	31.0	O K
120	min	Summer	98.563	0.563	15.4	25.7	O K
180	min	Summer	98.462	0.462	14.7	21.1	O K
240	min	Summer	98.374	0.374	14.1	17.0	O K
360	min	Summer	98.234	0.234	13.1	10.7	ОК
480	min	Summer	98.137	0.137	12.5	6.2	ОК
600	min	Summer	98.076	0.076	12.1	3.5	ОК
720	min	Summer	98.049	0.049	11.7	2.2	ОК
960	min	Summer	98.040	0.040	9.5	1.8	O K
1440	min	Summer	98.029	0.029	7.0	1.3	O K
2160	min	Summer	98.021	0.021	5.1	1.0	O K
2880	min	Summer	98.017	0.017	4.1	0.8	O K
4320	min	Summer	98.012	0.012	2.9	0.6	O K
5760	min	Summer	98.010	0.010	2.3	0.5	ОК
7200	min	Summer	98.008	0.008	2.0	0.4	ОК
8640	min	Summer	98.007	0.007	1.7	0.3	ОК
10080	min	Summer	98.007	0.007	1.6	0.3	ОК
15	min	Winter	98.641	0.641	15.9	29.2	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
15	min	Summer	155.298	0.0	15	
30	min	Summer	107.084	0.0	24	
60	min	Summer	70.705	0.0	42	
120	min	Summer	42.286	0.0	76	
180	min	Summer	31.523	0.0	108	
240	min	Summer	25.633	0.0	140	
360	min	Summer	19.132	0.0	200	
480	min	Summer	15.531	0.0	258	
600	min	Summer	13.188	0.0	312	
720	min	Summer	11.523	0.0	366	
960	min	Summer	9.274	0.0	488	
1440	min	Summer	6.793	0.0	724	
2160	min	Summer	4.931	0.0	1084	
2880	min	Summer	3.916	0.0	1432	
4320	min	Summer	2.816	0.0	2132	
5760	min	Summer	2.236	0.0	2928	
7200	min	Summer	1.880	0.0	3592	
8640	min	Summer	1.639	0.0	4336	
10080	min	Summer	1.465	0.0	4960	
15	min	Winter	155.298	0.0	16	
		©1982-	-2020 I	nnovyze		

Engineering and Development Sol	Page 2	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Micro
Date 28/09/2023 13:52	Designed by StellaMitchell	Drainage
File J-3131 Turbine 3 SA	Checked by	Dialilacie
Innovyze	Source Control 2020.1.3	

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
20		T-7-1	98.752	0 750	16.6	34.3	ОК	
			98.771					
120	min	Winter	98.586	0.586	15.5	26.7	O K	
180	min	Winter	98.432	0.432	14.5	19.7	O K	
240	min	Winter	98.305	0.305	13.6	13.9	O K	
360	min	Winter	98.121	0.121	12.4	5.5	O K	
480	min	Winter	98.048	0.048	11.5	2.2	O K	
600	min	Winter	98.041	0.041	9.7	1.9	O K	
720	min	Winter	98.036	0.036	8.5	1.6	ОК	
960	min	Winter	98.029	0.029	6.8	1.3	O K	
1440	min	Winter	98.021	0.021	5.1	1.0	O K	
2160	min	Winter	98.015	0.015	3.6	0.7	O K	
2880	min	Winter	98.012	0.012	2.9	0.6	O K	
4320	min	Winter	98.009	0.009	2.1	0.4	O K	
5760	min	Winter	98.007	0.007	1.7	0.3	O K	
7200	min	Winter	98.006	0.006	1.5	0.3	O K	
8640	min	Winter	98.005	0.005	1.2	0.2	O K	
10080	min	Winter	98.005	0.005	1.1	0.2	ОК	

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
30	min	Winter	107.084	0.0	26
60	min	Winter	70.705	0.0	46
120	min	Winter	42.286	0.0	82
180	min	Winter	31.523	0.0	114
240	min	Winter	25.633	0.0	146
360	min	Winter	19.132	0.0	202
480	min	Winter	15.531	0.0	244
600	min	Winter	13.188	0.0	306
720	min	Winter	11.523	0.0	360
960	min	Winter	9.274	0.0	474
1440	min	Winter	6.793	0.0	714
2160	min	Winter	4.931	0.0	1100
2880	min	Winter	3.916	0.0	1468
4320	min	Winter	2.816	0.0	2176
5760	min	Winter	2.236	0.0	2872
7200	min	Winter	1.880	0.0	3568
8640	min	Winter	1.639	0.0	4480
10080	min	Winter	1.465	0.0	5024

Engineering and Development Sol	Page 3	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Micro
Date 28/09/2023 13:52	Designed by StellaMitchell	Drainage
File J-3131 Turbine 3 SA	Checked by	Dialilads
Innovvze	Source Control 2020.1.3	

Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 189875 67794 SW 89875 67794 Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +50

Time Area Diagram

Total Area (ha) 0.125

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.125

Engineering and Development Sol	Page 4	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Micro
Date 28/09/2023 13:52	Designed by StellaMitchell	Desinado
File J-3131 Turbine 3 SA	Checked by	niailiade
Innovvze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 100.000

<u>Cellular Storage Structure</u>

Invert Level (m) 98.000 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 8.67000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 8.67000

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0	.000		48.0			48.0	0	.900		0.0			70.4
0	.800		48.0			70.4							

Engineering and Development Sol	Page 1	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Micro
Date 28/09/2023 13:42	Designed by StellaMitchell	Drainage
File J-3131 Turbie 4 SA	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

Half Drain Time : 28 minutes.

	Storm	n	Max	Max	Max	Max	Status
	Event	=	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	98.781	0.781	16.8	35.6	O K
30	min	Summer	98.929	0.929	17.8	42.4	O K
60	min	Summer	98.995	0.995	18.3	45.4	O K
120	min	Summer	98.872	0.872	17.4	39.7	O K
180	min	Summer	98.762	0.762	16.7	34.7	O K
240	min	Summer	98.661	0.661	16.0	30.1	O K
360	min	Summer	98.487	0.487	14.8	22.2	O K
480	min	Summer	98.349	0.349	13.9	15.9	O K
600	min	Summer	98.242	0.242	13.2	11.0	ОК
720	min	Summer	98.159	0.159	12.6	7.2	ОК
960	min	Summer	98.062	0.062	12.0	2.8	ОК
1440	min	Summer	98.039	0.039	9.2	1.8	O K
2160	min	Summer	98.028	0.028	6.7	1.3	O K
2880	min	Summer	98.022	0.022	5.3	1.0	O K
4320	min	Summer	98.016	0.016	3.9	0.7	O K
5760	min	Summer	98.013	0.013	3.0	0.6	O K
7200	min	Summer	98.011	0.011	2.6	0.5	O K
8640	min	Summer	98.010	0.010	2.3	0.4	ОК
10080	min	Summer	98.009	0.009	2.1	0.4	ОК
15	min	Winter	98.899	0.899	17.6	41.0	ОК

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
15	min	Summer	155.298	0.0	16
30	min	Summer	107.084	0.0	26
60	min	Summer	70.705	0.0	44
120	min	Summer	42.286	0.0	78
180	min	Summer	31.523	0.0	110
240	min	Summer	25.633	0.0	144
360	min	Summer	19.132	0.0	206
480	min	Summer	15.531	0.0	266
600	min	Summer	13.188	0.0	326
720	min	Summer	11.523	0.0	382
960	min	Summer	9.274	0.0	492
1440	min	Summer	6.793	0.0	722
2160	min	Summer	4.931	0.0	1096
2880	min	Summer	3.916	0.0	1448
4320	min	Summer	2.816	0.0	2136
5760	min	Summer	2.236	0.0	2928
7200	min	Summer	1.880	0.0	3568
8640	min	Summer	1.639	0.0	4352
10080	min	Summer	1.465	0.0	5080
15	min	Winter	155.298	0.0	16
		©1982-	-2020 I	nnovyze	

Engineering and Development Sol	Page 2	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Micro
Date 28/09/2023 13:42	Designed by StellaMitchell	Drainage
File J-3131 Turbie 4 SA	Checked by	Dialilads
Innovyze	Source Control 2020.1.3	

	Stor Even			-	Max Infiltration		Status	
			(m)	(m)	(1/s)	(m³)		
30	min	Winter	99.078	1.078	18.8	49.1	ОК	
60	min	Winter	99.144	1.144	19.3	52.2	ОК	
120	min	Winter	98.947	0.947	17.9	43.2	ОК	
180	min	Winter	98.775	0.775	16.8	35.3	ОК	
240	min	Winter	98.624	0.624	15.8	28.4	O K	
360	min	Winter	98.380	0.380	14.1	17.3	ОК	
480	min	Winter	98.201	0.201	12.9	9.2	O K	
600	min	Winter	98.081	0.081	12.1	3.7	ОК	
720	min	Winter	98.047	0.047	11.2	2.1	ОК	
960	min	Winter	98.038	0.038	9.1	1.7	O K	
1440	min	Winter	98.028	0.028	6.6	1.3	ОК	
2160	min	Winter	98.020	0.020	4.8	0.9	O K	
2880	min	Winter	98.016	0.016	3.9	0.7	ОК	
4320	min	Winter	98.012	0.012	2.8	0.5	ОК	
5760	min	Winter	98.009	0.009	2.2	0.4	O K	
7200	min	Winter	98.008	0.008	1.8	0.4	ОК	
8640	min	Winter	98.007	0.007	1.6	0.3	O K	
10080	min	Winter	98.006	0.006	1.5	0.3	ОК	

	Stor Even		Rain (mm/hr)		Time-Peak (mins)
30	min	Winter	107.084	0.0	27
60	min	Winter	70.705	0.0	46
120	min	Winter	42.286	0.0	84
180	min	Winter	31.523	0.0	118
240	min	Winter	25.633	0.0	152
360	min	Winter	19.132	0.0	214
480	min	Winter	15.531	0.0	274
600	min	Winter	13.188	0.0	324
720	min	Winter	11.523	0.0	362
960	min	Winter	9.274	0.0	488
1440	min	Winter	6.793	0.0	734
2160	min	Winter	4.931	0.0	1076
2880	min	Winter	3.916	0.0	1464
4320	min	Winter	2.816	0.0	2180
5760	min	Winter	2.236	0.0	2872
7200	min	Winter	1.880	0.0	3616
8640	min	Winter	1.639	0.0	4328
10080	min	Winter	1.465	0.0	4784

Engineering and Development Solutions Ltd				
Unit E4				
Threemilestone Industrial				
Truro, TR4 9LD		Mirro		
Date 28/09/2023 13:42	Designed by StellaMitchell	Drainage		
File J-3131 Turbie 4 SA	Checked by	Dialilads		
Innovyze	Source Control 2020.1.3			

Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 189875 67794 SW 89875 67794 Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +50

Time Area Diagram

Total Area (ha) 0.165

Time (mins) Area
From: To: (ha)

0 4 0.165

Engineering and Development Solutions Ltd					
Unit E4					
Threemilestone Industrial					
Truro, TR4 9LD		Micco			
Date 28/09/2023 13:42	Designed by StellaMitchell	Desinado			
File J-3131 Turbie 4 SA	Checked by	niailiade			
Innovvze	Source Control 2020.1.3				

Storage is Online Cover Level (m) 100.000

<u>Cellular Storage Structure</u>

Invert Level (m) 98.000 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 8.67000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 8.67000

Depth (m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf. Area	(m²)
0.000		48.0			48.0	1.	.300		0.0		81.6
1.200		48.0			81.6						

Engineering and Development Solutions Ltd					
Unit E4					
Threemilestone Industrial					
Truro, TR4 9LD		Micco			
Date 28/09/2023 13:44	Designed by StellaMitchell	Drainage			
File J-3131 Turbine 5 SA	Checked by	Dialilade			
Innovyze	Source Control 2020.1.3				

Half Drain Time : 27 minutes.

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
15	min	Summer	98.771	0.771	15.6	32.2	O K
30	min	Summer	98.916	0.916	16.6	38.3	O K
60	min	Summer	98.979	0.979	17.0	40.9	O K
120	min	Summer	98.854	0.854	16.2	35.7	O K
180	min	Summer	98.745	0.745	15.4	31.1	O K
240	min	Summer	98.644	0.644	14.8	26.9	O K
360	min	Summer	98.472	0.472	13.7	19.7	O K
480	min	Summer	98.337	0.337	12.8	14.1	O K
600	min	Summer	98.231	0.231	12.1	9.7	O K
720	min	Summer	98.151	0.151	11.6	6.3	O K
960	min	Summer	98.059	0.059	11.0	2.5	O K
1440	min	Summer	98.038	0.038	8.4	1.6	ОК
2160	min	Summer	98.028	0.028	6.1	1.2	O K
2880	min	Summer	98.022	0.022	4.9	0.9	ОК
4320	min	Summer	98.016	0.016	3.5	0.7	O K
5760	min	Summer	98.013	0.013	2.8	0.5	ОК
7200	min	Summer	98.011	0.011	2.3	0.5	O K
8640	min	Summer	98.009	0.009	2.0	0.4	ОК
0080	min	Summer	98.009	0.009	1.9	0.4	ОК
15	min	Winter	98.887	0.887	16.4	37.1	O K

Storm Event		Rain (mm/hr)		Time-Peak (mins)	
15	min	Summer	155.298	0.0	16
30	min	Summer	107.084	0.0	25
60	min	Summer	70.705	0.0	42
120	min	Summer	42.286	0.0	78
180	min	Summer	31.523	0.0	110
240	min	Summer	25.633	0.0	144
360	min	Summer	19.132	0.0	206
480	min	Summer	15.531	0.0	266
600	min	Summer	13.188	0.0	324
720	min	Summer	11.523	0.0	382
960	min	Summer	9.274	0.0	492
1440	min	Summer	6.793	0.0	734
2160	min	Summer	4.931	0.0	1100
2880	min	Summer	3.916	0.0	1432
4320	min	Summer	2.816	0.0	2168
5760	min	Summer	2.236	0.0	2896
7200	min	Summer	1.880	0.0	3632
8640	min	Summer	1.639	0.0	4320
10080	min	Summer	1.465	0.0	5008
15		Winter	155.298	0.0	16

Engineering and Development Solutions Ltd				
Unit E4				
Threemilestone Industrial				
Truro, TR4 9LD		Mirro		
Date 28/09/2023 13:44	Designed by StellaMitchell	Drainage		
File J-3131 Turbine 5 SA	Checked by	Diali larie		
Innovyze	Source Control 2020.1.3			

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
30	min	Winter	99.061	1.061	17.5	44.4	O K
60	min	Winter	99.124	1.124	17.9	47.0	O K
120	min	Winter	98.925	0.925	16.6	38.7	O K
180	min	Winter	98.753	0.753	15.5	31.5	O K
240	min	Winter	98.604	0.604	14.5	25.2	O K
360	min	Winter	98.364	0.364	13.0	15.2	O K
480	min	Winter	98.190	0.190	11.8	7.9	O K
600	min	Winter	98.075	0.075	11.1	3.1	O K
720	min	Winter	98.047	0.047	10.2	2.0	ОК
960	min	Winter	98.038	0.038	8.2	1.6	O K
1440	min	Winter	98.028	0.028	6.1	1.2	O K
2160	min	Winter	98.020	0.020	4.4	0.8	O K
2880	min	Winter	98.016	0.016	3.5	0.7	O K
4320	min	Winter	98.012	0.012	2.6	0.5	O K
5760	min	Winter	98.009	0.009	2.0	0.4	O K
7200	min	Winter	98.008	0.008	1.7	0.3	ОК
8640	min	Winter	98.007	0.007	1.5	0.3	O K
10080	min	Winter	98.006	0.006	1.4	0.3	ОК

	Storm Event			Flooded Volume (m³)	Time-Peak (mins)
30	min	Winter	107.084	0.0	27
60	min	Winter	70.705	0.0	46
120	min	Winter	42.286	0.0	82
180	min	Winter	31.523	0.0	118
240	min	Winter	25.633	0.0	152
360	min	Winter	19.132	0.0	214
480	min	Winter	15.531	0.0	272
600	min	Winter	13.188	0.0	322
720	min	Winter	11.523	0.0	360
960	min	Winter	9.274	0.0	484
1440	min	Winter	6.793	0.0	730
2160	min	Winter	4.931	0.0	1088
2880	min	Winter	3.916	0.0	1420
4320	min	Winter	2.816	0.0	2244
5760	min	Winter	2.236	0.0	2896
7200	min	Winter	1.880	0.0	3656
8640	min	Winter	1.639	0.0	4264
10080	min	Winter	1.465	0.0	5000

Engineering and Development Sol	Page 3	
Unit E4		
Threemilestone Industrial		
Truro, TR4 9LD		Micro
Date 28/09/2023 13:44	Designed by StellaMitchell	Desinado
File J-3131 Turbine 5 SA	Checked by	Dialilade
Innovyze	Source Control 2020.1.3	

Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 189875 67794 SW 89875 67794 Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +50

Time Area Diagram

Total Area (ha) 0.150

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.150

Engineering and Development Solutions Ltd				
Unit E4				
Threemilestone Industrial				
Truro, TR4 9LD		Micro		
Date 28/09/2023 13:44	Designed by StellaMitchell	Desinado		
File J-3131 Turbine 5 SA	Checked by	niailiade		
Innovvze	Source Control 2020.1.3			

Storage is Online Cover Level (m) 100.000

<u>Cellular Storage Structure</u>

Invert Level (m) 98.000 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 8.67000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 8.67000

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	44.0		44.0	1.	300		0.0			76.4
1.200	44.0		76.4							

Engineering and Development Solutions Ltd
Registered Office: Unit 4E | Threemilestone Ind. Estate | Truro | Cornwall | TR4 9LD
Registered in England No. 10467487